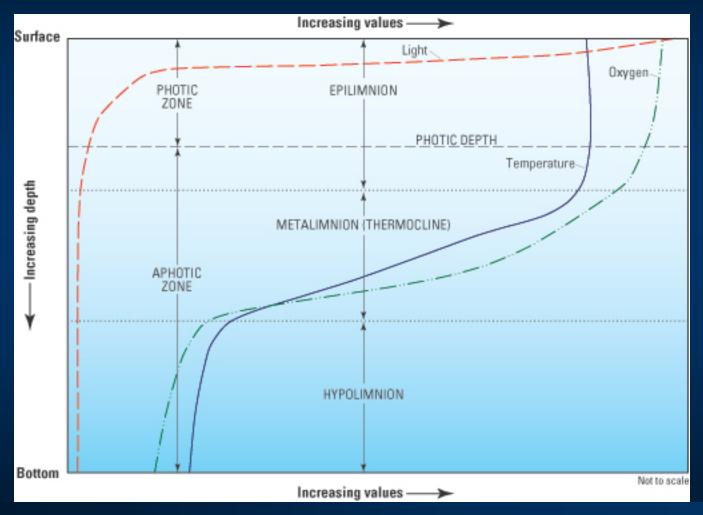


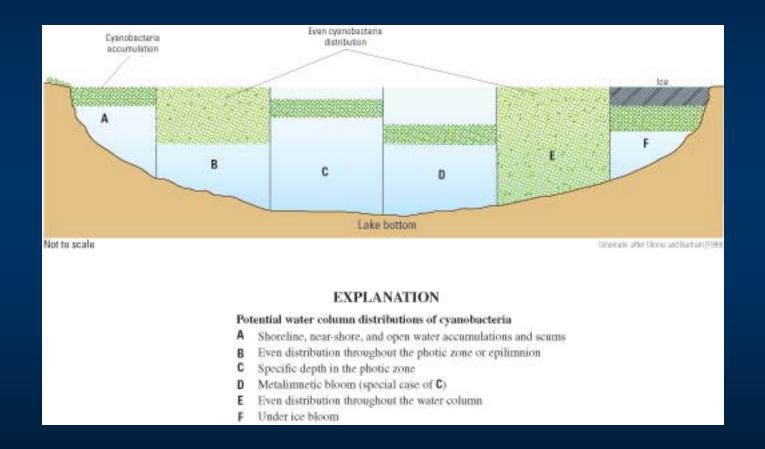
Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-and-Odor Studies in Lakes and Reservoirs

Jennifer L. Graham, Keith A. Loftin, Barry H. Rosen, and Ann St. Amand

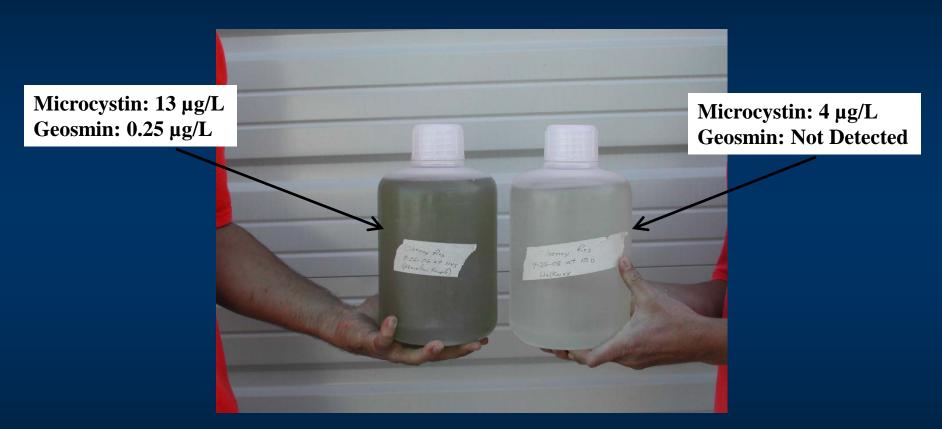
National Water Quality Monitoring Conference Workshop April 25, 2010

Overview


- Spatial and temporal variability of cyanobacterial populations
- Sample collection approaches
- Common study types, objectives, designs, and approaches



Lakes are Characterized by Vertical Gradients Caused by Light and Thermal Stratification. Cyanobacteria Can Exploit These Gradients and Maintain a Position in the Water Column that is Optimal for Growth.



Sample Location Relative to the Distribution of Cyanobacteria May Substantially Affect Results

Concentrations of Toxins and Taste-and-Odor Compounds May Vary by Orders of Magnitude at Different Sample Locations Within a Lake

Samples collected about 50 m apart

Vertical Migration or Wind Movement of Surface Accumulations May Rapidly Change the Aerial Distribution of Cyanobacteria

Rock Creek Lake, Iowa 2006 Beach Closure Event

Photos Courtesy of IA DNR



Photo Courtesy of IA DNR

Boat Ramps Friday August 11

Vertical Migration or Wind Movement of Surface Accumulations May Rapidly **Change the Aerial Distribution of Cyanobacteria**

Rock Creek Lake, Iowa 2006 Beach Closure Event

Beach Area

Beach Area Thursday Amoust 3

WHERE DID THE CYANOBACTERIA GO?

Photos Courtesy of IA DNR

Photo Courtesy of IA DNR

Boat Ramps Friday August 11

Vertical Migration or Wind Movement of Surface Accumulations May Rapidly **Change the Aerial Distribution of Cyanobacteria**

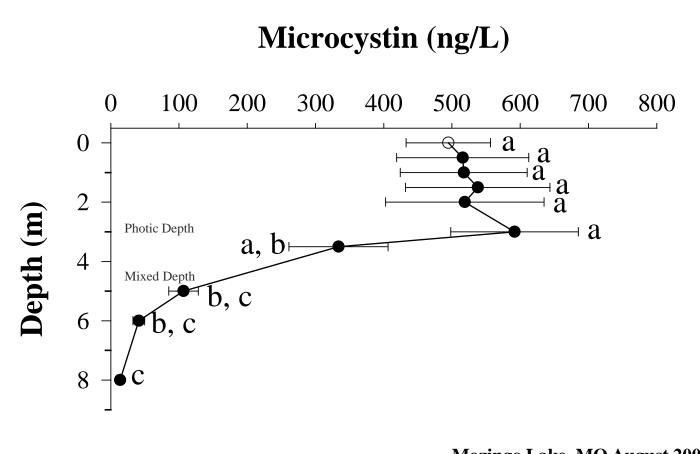
> **Rock Creek Lake, Iowa 2006 Beach Closure Event**

Beach Area

Thursday Amoust 3

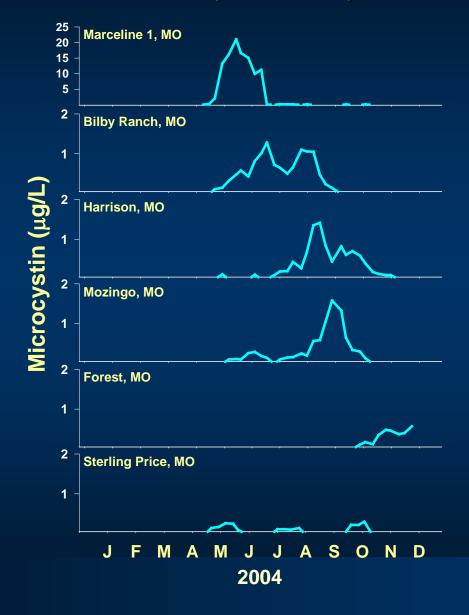
WHERE DID THE CYANOBACTERIA GO?

Most likely explanation is redistribution in the water column


Photos Courtesy of IA DNR

Boat Ramps Friday August 11

Concentrations of Toxins and Taste-and-Odor Compounds May Vary Considerably With Depth in the Water Column



Mozingo Lake, MO August 2001

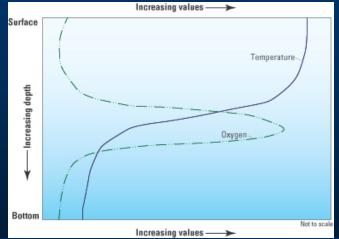
After Graham and others, 2006

Seasonal Patterns in Microcystin Concentration are Unique to Individual Lakes and Peaks May Occur Anytime Throughout the Year

After Graham and others, 2006

Considerations When Choosing Sampling Locations and Approaches

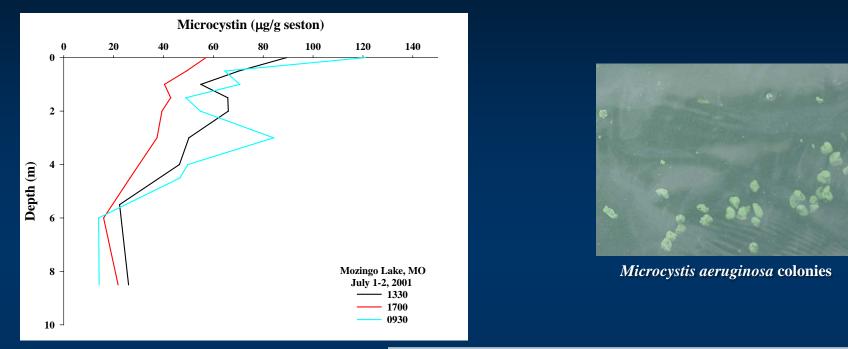
- Specific study objectives
- Stratification
- Aerial and water-column distribution of cyanobacteria
- Flexibility of sampling plans
 - Where and how to collect samples often is decided in the field



Determining the Location of Cyanobacteria in the Water Column

- Visual assessment
- Vertical profiles
 - Photic depth
 - Stratification
 - Mixed depth
 - Photosynthetic activity
- Signs of photosynthetic activity include:
 - Sharp increases in pH and dissolved oxygen
 - Increased fluorescence

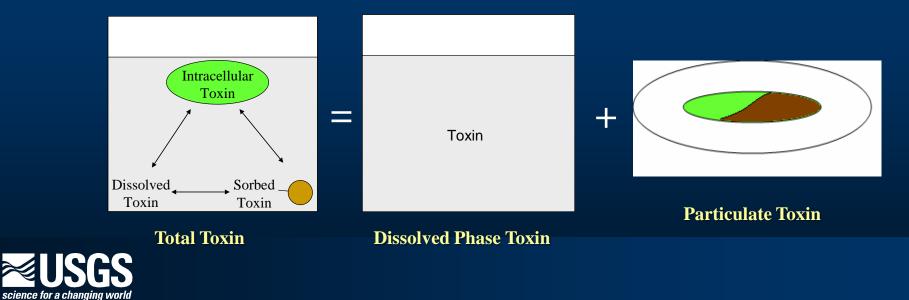
Common Types of Samples


- Surface samples
- Discrete-depth samples
 - Location of the cyanobacterial community is known
 - Structure of interest at depth
 - Vertical water column distribution of interest
- Depth-integrated samples
 - Integrated photic zone
 - Integrated epilimnion
 - Integrated water column

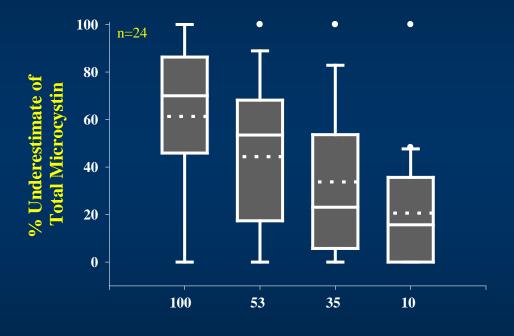

Sample Concentrations Can Vary Considerably Depending on When, Where, and How Samples Are Collected

	Sample Type and					
	Microcystin Concentration (µg/g Seston)					
	Integrated Integrated Integrated					
Time	Surface	Photic Zone	Epilimnion	Water Column		
0930	121	68	71	57		
1330	89	58	66	55		
1700	57	39	42	37		

Common Sampling Approaches


Plankton Net Sampling

Whole Water Sampling


Filter/Filtrate Sampling

Plankton Nets May Substantially Underestimate Concentrations of Toxins and Taste and Odor Compounds

East Okoboji, IA Total Microcystin – 7.0 μg/L Microcystin > 100 μm – 6.4 μg/L Net Microcystin > 100 μm – 2.3 μg/L

Net Size (µm)

Clear Understanding of Study Objectives is Essential to Selecting the Appropriate Sampling Approach

- Study objectives dictate:
 - When, where, and how samples are collected
 - Variables measured
 - Ancillary data collected

Reconnaissance Studies

Assess Occurrence, Distribution, and Concentration

General objective	Site location	Sample frequency	Sample type			
Regional studies						
	Spatial	variability				
Emphasis on presence/absence	Single representative site, typi-	Single point in time when most cyanobacterial-related issues occur	Integrated photic zone			
	cally an open, deep water site		Integrated epilimnion			
			Surface sample			
	Site will be determined based on the location of surface accumulations and scums	During known surface bloom events	Surface sample			
	Spatial and ter	mporal variability				
Emphasis on presence/absence	Single representative site, typi-	Multiple times during the period	Integrated photic zone			
and changes in concentration with time	cally an open, deep water site	when most cyanobacterial- related issues occur	Integrated epilimnion			
with time		• Weekly • Bi-weekly • Monthly • Annually	Surface sample			
Single-system studies						
		variability				
Emphasis on presence/absence	Multiple sites	Single point in time when a cyanobacterial bloom is occurring	Integrated photic zone			
			Integrated epilimnion			
			Integrated water column			
			Surface sample			
	Spatial and ter	mporal variability				
Emphasis on presence/absence	Multiple sites	Multiple times during the period	Integrated photic zone			
and changes in concentration over time		when most cyanobacterial- related issues occur	Integrated epilimnion			
over une		Weekly	Integrated water column			
		• Bi-weekly • Monthly	Surface sample			
Emphasis on spatial changes	Single representative site	Multiple points in time when a	Integrated photic zone			
within the lake or water	Multiple sites	cyanobacterial bloom is occurring • Hourly • Daily	Integrated epilimnion			
column over relatively short periods of time			Integrated water column			
periods of time			Surface sample			
			Discrete depth			

When, Where, and How Samples Are Collected is Important

Study	Sample Location	Sample Type	n	% Samples with MC	Maximum MC (µg/L)
Graham and others 1999-2006	Open Water, Integrated Photic	Total	2546	39	52
Midwest Recon 2006	Targeted Blooms, Bloom Grab	Total	23	96	13,000
Texas Recon 2006	Open Water, Surface Grab	Dissolved	67	22	0.2
EPA NLA 2007	Open Water, Integrated Photic	Total	1332	33	230

Microcystin was measured by ELISA in all studies

Monitoring Studies

Evaluate the Potential for Human Health Risks and Taste-and-Odor Events

General objective	Site location	Sample frequency	Sample type
Recreational areas	Beaches Open water areas used for full- body contact recreation Bay or cove areas used for full- body contact recreation Public access sites	Routine basis during periods of peak recreational useDailyWeekly	Surface sample Integrated photic zone
Drinking-water supplies	Location relevant to the drinking- water intake(s)	Routine basis • Daily • Weekly During periods when events have historically occurred During events	Discrete depth Integrated photic zone Integrated epilimnion Integrated water column
SUGCG	Reach Transect 1 Ankle deep 2 Kree deep 2 Creet deep W	Transect 3 Depth=0.15m 3 Depth=0.45m 6 Depth=1.5m 9 Pater	Zone 3

ide

Figure Courtesy of E. O'Brien, IA DNR

science for a changing world

Interpretive Studies

Assess the Processes that Affect the Spatial and Temporal Distribution and Abundance of Cyanobacteria and Associated By-Products

influencing spatial and/or temporal occurrence Real-time estimation of occurrence/concentration Predictive models	 Single representative site, typically an open, deep water site Sites for drinking-water studies are typically located near intakes 	Routine basis • Weekly • Bi-weekly • Monthly	Integrated photic zone Integrated epilimnion Integrated water column Discrete depth	
N	 Multiple sites Sites where cyanobacterial blooms are known to initiate Sites where cyanobacteria are typically abundant Inflow sites¹ 			
S S S S S S S S S S S S S S S S S S S	Sites where surface accumula- tions/scums are located	Event samples Sampling plans need to be flexible enough to respond to events	<figure></figure>	The unit of the subject to change.

Summary

- Understanding the Effects of Sampling Approach on Results is Critical to Data Interpretation and Analysis
 - Clear understanding of study objectives is essential to selecting the appropriate sampling approach
 - Sample location relative to the distribution of cyanobacteria may substantially affect results
 - Sample type (total, dissolved, particulate) can affect results and comparability to other studies
 - Results may vary considerably depending on when, where, and how samples are collected

Photo Courtesy of KDHE

Sample Collection Guidance

<u>USGS National Field Manual Chapter 7.5</u> Cyanobacteria in Lakes and Reservoirs: Toxin and Taste-and-Odor Sampling Guidelines

http://water.usgs.gov/owq/FieldManual/Chapter7/7.5.html

SIR 2008-5038 Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-and-Odor Studies in Lakes and Reservoirs

http://pubs.usgs.gov/sir/2008/5038

Additional Information:

http://ks.water.usgs.gov/studies/qw/cyanobacteria/

jlgraham@usgs.gov 785-832-3511

